Surrogate duality for robust optimization

نویسندگان

  • Satoshi Suzuki
  • Daishi Kuroiwa
  • Gue Myung Lee
چکیده

Robust optimization problems, which have uncertain data, are considered. We prove surrogate duality theorems for robust quasiconvex optimization problems and surrogate min-max duality theorems for robust convex optimization problems. We give necessary and sufficient constraint qualifications for surrogate duality and surrogate min-max duality, and show some examples at which such duality results are used effectively. Moreover, we obtain a surrogate duality theorem and a surrogate min-max duality theorem for semi-definite optimization problems in the face of data uncertainty.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Necessary and Sufficient Constraint Qualification for Surrogate Duality

In mathematical programming, constraint qualifications are essential elements for duality theory. Recently, necessary and sufficient constraint qualifications for Lagrange duality results have been investigated. Also, surrogate duality enables one to replace the problem by a simpler one in which the constraint function is a scalar one. However, as far as we know, a necessary and sufficient cons...

متن کامل

An Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem

A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...

متن کامل

An Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem

A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...

متن کامل

Zero duality gap in integer programming: P-norm surrogate constraint method

A p-norm surrogate constraint method is proposed in this paper for integer programming. A single surrogate constraint can be always constructed using p-norm such that the feasible sets in a surrogate relaxation and the primal problem match exactly. The p-norm surro-gate constraint method is thus guaranteed to succeed in identifying the optimal solution of the primal problem with zero duality ga...

متن کامل

Robust Duality for Generalized Convex Programming Problems under Data Uncertainty∗

In this paper we present a robust duality theory for generalized convex programming problems in the face of data uncertainty within the framework of robust optimization. We establish robust strong duality for an uncertain nonlinear programming primal problem and its uncertain Lagrangian dual by showing strong duality between the deterministic counterparts: robust counterpart of the primal model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2013